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Please note that the language used in your exam paper must correspond to the language for which 

you registered during exam registration. 

This exam question consists of 2 pages in total

NB: If you fall ill during the actual examination at Peter Bangsvej, you must contact an invigilator 

in order to be registered as having fallen ill. Then you submit a blank exam paper and leave the 

examination. When you arrive home, you must contact your GP and submit a medical report to the 

Faculty of Social Sciences no later than seven (7) days from the date of the exam.



The Exam consists of 3 problems that will enter the evaluation with equal weights.

1. Consider an economy with securities available for investment at time t = 0 and with ultimate

payment at time t = T . A stock and a zero coupon bond can be purchased at t = 0 at prices S0 and

e
−rT , respectively, where r is a constant. Neither of these securities has payments between time 0

and T .

Assume that at time T the realization of two possible states of the world is revealed. The stock has

a payoff of uS0 and dS0, depending on the state, where u > e
rT > d ≥ 0 are constants. The bond

has a payment of 1 at t = T , irrespective of the state.

(a) Explain what is meant by risk neutral probabilities and (Arrow-Debreu) state prices and deter-

mine these for this economy.

(b) What is the forward price at t = 0 for delivery of the stock at t = T ? What is the arbitrage

argument?

(c) Consider a forward contract on a stock maturing at time T . Compare the pricing of a European

call option on the stock with the price of a European call on the forward contract on the stock,

all maturing at T and having the same strike K.

2. Let V (t) denote the probability of a borrower not defaulting before time t ≥ 0, V (0) = 1.

(a) We will often assume that V (t) is weakly decreasing in t. Why?

(b) Assume that V is differentiable. Define and interpret the continuously compounded hazard

rate, λ(t).

(c) What is a ratings transitions matrix? What is the typical structure af such a matrix?

(d) What assumptions are needed to use a ratings transition matrix to derive an estimate of the

likelihood of a default of a rated issuer within a certain time horizon? And will this estimate

be a real world or a risk neutral probability?

3. Let R(t, T ) denote the continuously compounded yield at time t of a zero coupon bond that matures

at time T > t. Assume that R follows an Ito-process of the form

dR = µdt+ σdz

where z is a Brownian motion, and µ and σ > 0 are bounded functions of R and t.

(a) For a bond with given maturity T show that the volatility of the bond price P (t, T ) will con-

verge to zero as t converges to T .

(b) Now assume µ = m(k − R) and σ = sR, where m, k and s are positive constants. What is

the process followed by the bond price?


